Examining the Role of Sphingosine Kinase-2 in the Regulation of Endothelial Cell Barrier Integrity.
نویسندگان
چکیده
OBJECTIVE A key mediator of vascular EC barrier integrity, S1P, is derived from phosphorylation of sphingosine by the SK-1 and SK-2. While previous work indicates that SK-1 can regulate EC barrier integrity, whether SK-2 has a similar role remains to be determined. METHODS A cell impedance assay was used to assess human umbilical vein EC and bone marrow EC barrier integrity in vitro, with application of the SK inhibitors ABC294640, PF543, SKi, and MP-A08. In vivo studies were conducted using intravital microscopy to assess EC barrier integrity in SK-1 (Sphk1(-/-)) and SK-2 (Sphk2(-/-)) knock-out mice. RESULTS Only ABC294640 and MP-A08, which can both inhibit SK-2, caused a decrease in EC barrier integrity in vitro in both cell types. Intravital microscopy revealed that Sphk1(-/-) mice had reduced EC barrier integrity compared to WT mice, whereas no change was evident in Sphk2(-/-) mice. CONCLUSIONS Our data suggest that in vitro inhibition of SK-2, can compromise the integrity of the EC monolayer, while SK-1 exerts a more dominant control in vivo. These data may have clinical implications and could aid in the development of new treatments for disorders of vascular barrier function.
منابع مشابه
HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1–phosphate receptor-1 crossactivation
Endothelial cells normally form a dynamically regulated barrier at the blood-tissue interface, and breakdown of this barrier is a key pathogenic factor in inflammatory disorders such as sepsis. Pro-inflammatory signaling by the blood coagulation protease thrombin through protease activated receptor-1 (PAR1) can disrupt endothelial barrier integrity, whereas the bioactive lipid sphingosine 1-pho...
متن کاملEndothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation.
Endothelial cells normally form a dynamically regulated barrier at the blood-tissue interface, and breakdown of this barrier is a key pathogenic factor in inflammatory disorders such as sepsis. Pro-inflammatory signaling by the blood coagulation protease thrombin through protease activated receptor-1 (PAR1) can disrupt endothelial barrier integrity, whereas the bioactive lipid sphingosine 1-pho...
متن کاملSphingosine 1-Phosphate Has Dual Functions in the Regulation of Endothelial Cell Permeability and Ca Metabolism
Ca signaling plays an important role in endothelial cell (EC) functions including the regulation of barrier integrity. Recently, the endogenous lipid derivative, sphingosine-1-phosphate (S1P), has emerged as an important modulator of EC barrier function. We investigated the role of endogenously generated S1P in Ca metabolism and barrier function in human umbilical endothelial cells (HUVECs) sti...
متن کاملBone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling.
RATIONALE Little is known about the contribution of bone marrow-derived progenitor cells (BMPCs) in the regulation endothelial barrier function as defined by microvascular permeability alterations at the level of adherens junctions (AJs). OBJECTIVE We investigated the role of BMPCs in annealing AJs and thereby in preventing lung edema formation induced by endotoxin (LPS). METHODS AND RESULT...
متن کاملFocal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle
Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microcirculation
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2016